Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.05.01.22274406

Résumé

South Africa's fourth COVID-19 wave was driven predominantly by three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern. We have now identified two new lineages, BA.4 and BA.5. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del, L452R, F486V and the wild type amino acid at Q493. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure with the TaqPath COVID-19 qPCR assay. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa from the first week of April 2022 onwards. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.07 - 0.09) and 0.12 (95% CI: 0.09 - 0.15) per day respectively over BA.2 in South Africa.


Sujets)
COVID-19
2.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1249711.v1

Résumé

Background: Over 4 million SARS-CoV-2 genomes have been sequenced globally in the past 2 years. This has been crucial in elucidating transmission chains within communities, the development of new diagnostic methods, vaccines, and antivirals. Although several sequencing technologies have been employed, Illumina and Oxford Nanopore remain the two most commonly used platforms. The sequence quality between these two platforms warrants a comparison of the genomes produced by the two technologies. Here, we compared the sequence quality produced by the Oxford Nanopore Technology GridION and the Illumina MiSeq for 28 sequencing runs. Results: Our results show that the MiSeq had a significantly higher number of sequences classified by Nextclade as good and mediocre compared to the GridION. The MiSeq also had a significantly higher sequence coverage and mutation counts than the GridION. Conclusion: Due to the low sequence coverage, high number of indels, and sensitivity to viral load noted with the GridION when compared to MiSeq, we can conclude that the MiSeq is more favourable for genomic surveillance, as successful genomic surveillance is dependent on high quality, near-whole genome sequences.

3.
Raquel Viana; Sikhulile Moyo; Daniel Gyamfi Amoako; Houriiyah Tegally; Cathrine Scheepers; Richard J Lessells; Jennifer Giandhari; Nicole Wolter; Josie Everatt; Andrew Rambaut; Christian Althaus; Eduan Wilkinson; Adriano Mendes; Amy Strydom; Michaela Davids; Simnikiwe Mayaphi; Simani Gaseitsiwe; Wonderful T Choga; Dorcas Maruapula; Boitumelo Zuze; Botshelo Radibe; Legodile Koopile; Roger Shapiro; Shahin Lockman; Mpaphi B. Mbulawa; Thongbotho Mphoyakgosi; Pamela Smith-Lawrence; Mosepele Mosepele; Mogomotsi Matshaba; Kereng Masupu; Mohammed Chand; Charity Joseph; Lesego Kuate-Lere; Onalethatha Lesetedi-Mafoko; Kgomotso Moruisi; Lesley Scott; Wendy Stevens; Constantinos Kurt Wibmer; Anele Mnguni; Arshad Ismail; Boitshoko Mahlangu; Darren P. Martin; Verity Hill; Rachel Colquhoun; Modisa S. Motswaledi; James Emmanuel San; Noxolo Ntuli; Gerald Motsatsi; Sureshnee Pillay; Thabo Mohale; Upasana Ramphal; Yeshnee Naidoo; Naume Tebeila; Marta Giovanetti; Koleka Mlisana; Carolyn Williamson; Nei-yuan Hsiao; Nokukhanya Msomi; Kamela Mahlakwane; Susan Engelbrecht; Tongai Maponga; Wolfgang Preiser; Zinhle Makatini; Oluwakemi Laguda-Akingba; Lavanya Singh; Ugochukwu J. Anyaneji; Monika Moir; Stephanie van Wyk; Derek Tshiabuila; Yajna Ramphal; Arisha Maharaj; Sergei Pond; Alexander G Lucaci; Steven Weaver; Maciej F Boni; Koen Deforche; Kathleen Subramoney; Diana Hardie; Gert Marais; Deelan Doolabh; Rageema Joseph; Nokuzola Mbhele; Luicer Olubayo; Arash Iranzadeh; Alexander E Zarebski; Joseph Tsui; Moritz UG Kraemer; Oliver G Pybus; Dominique Goedhals; Phillip Armand Bester; Martin M Nyaga; Peter N Mwangi; Allison Glass; Florette Treurnicht; Marietjie Venter; Jinal N. Bhiman; Anne von Gottberg; Tulio de Oliveira.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.19.21268028

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants respectively. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Sujets)
Syndrome respiratoire aigu sévère
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.14.21263564

Résumé

Characterizing SARS-CoV-2 evolution in specific geographies may help predict the properties of variants coming from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from the ancestral virus in a person with advanced HIV disease. Infection was before the emergence of the Beta variant first identified in South Africa, and the Delta variant. We compared early and late evolved virus to the ancestral, Beta, Alpha, and Delta viruses and tested against convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, whereas late virus was similar to Beta, exhibiting vaccine escape and, despite pre-dating Delta, strong escape of Delta-elicited neutralization. This example is consistent with the notion that variants arising in immune-compromised hosts, including those with advanced HIV disease, may evolve immune escape of vaccines and enhanced escape of Delta immunity, with implications for vaccine breakthrough and reinfections. HighlightsO_LIA prolonged ancestral SARS-CoV-2 infection pre-dating the emergence of Beta and Delta resulted in evolution of a Beta-like serological phenotype C_LIO_LISerological phenotype includes strong escape from Delta infection elicited immunity, intermediate escape from ancestral virus immunity, and weak escape from Beta immunity C_LIO_LIEvolved virus showed substantial but incomplete escape from antibodies elicited by BNT162b2 vaccination C_LI Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=110 SRC="FIGDIR/small/21263564v2_ufig1.gif" ALT="Figure 1"> View larger version (18K): org.highwire.dtl.DTLVardef@1194bfdorg.highwire.dtl.DTLVardef@1cbe318org.highwire.dtl.DTLVardef@aa74f8org.highwire.dtl.DTLVardef@e57969_HPS_FORMAT_FIGEXP M_FIG C_FIG


Sujets)
Hépatite D , Infections à VIH , COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.16.21259017

Résumé

Mauritius, a small island in the Indian Ocean, has had a unique experience of the SARS-CoV-2 pandemic. In March 2020, Mauritius endured a small first wave and quickly implemented control measures which allowed elimination of local transmission of SARS-CoV-2. When borders to the island reopened, it was accompanied by mandatory quarantine and testing of incoming passengers to avoid reintroduction of the virus into the community. As variants of concern (VOCs) emerged elsewhere in the world, Mauritius began using genomic surveillance to keep track of quarantined cases of these variants. In March 2021, another local outbreak occurred, and sequencing was used to investigate this new wave of local infections. Here, we analyze 154 SARS-CoV-2 viral genomes from Mauritius, which represent 12% of all the infections seem in Mauritius, these were both from specimens of incoming passengers before March 2021 and those of cases during the second wave. Our findings indicate that despite the presence of known VOCs Beta (B.1.351) and Alpha (B.1.1.7) among quarantined passengers, the second wave of local SARS-CoV-2 infections in Mauritius was caused by a single introduction and dominant circulation of the B.1.1.318 virus. The B.1.1.318 variant is characterized by fourteen non-synonymous mutations in the S-gene, with five encoded amino acid substitutions (T95I, E484K, D614G, P681H, D796H) and one deletion (Y144del) in the Spike glycoprotein. This variant seems to be increasing in prevalence and it is now present in 34 countries. This study highlights that despite having stopped the introduction of more transmissible VOCs by travel quarantines, a single undetected introduction of a B.1.1.318 lineage virus was enough to initiate a large local outbreak in Mauritius and demonstrated the need for continuous genomic surveillance to fully inform public health decisions.


Sujets)
COVID-19
6.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.03.21258228

Résumé

While most people effectively clear SARS-CoV-2, there are several reports of prolonged infection in immunosuppressed individuals. Here we present a case of prolonged infection of greater than 6 months with the shedding of high titter SARS-CoV-2 in an individual with advanced HIV and antiretroviral treatment failure. Through whole-genome sequencing at multiple time points, we demonstrate the early emergence of the E484K substitution associated with escape from neutralizing antibodies, followed by other escape mutations and the N501Y substitution found in most variants of concern. This provides support to the hypothesis of intra-host evolution as one mechanism for the emergence of SARS-CoV-2 variants with immune evasion properties.


Sujets)
COVID-19 , Infections à VIH
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.23.21252268

Résumé

The emergence and rapid rise in prevalence of three independent SARS-CoV-2 '501Y lineages', B.1.1.7, B.1.351 and P.1, in the last three months of 2020 has prompted renewed concerns about the evolutionarily capacity of SARS-CoV-2 to adapt to both rising population immunity and public health interventions such as vaccines and social distancing. Viruses giving rise to the different 501Y lineages have, presumably under intense natural selection following a shift in host environment, independently acquired multiple unique and convergent mutations. As a consequence all have gained epidemiological and immunological properties that will likely complicate the control of COVID-19. Here, by examining patterns of mutations that arose in SARS-CoV-2 genomes during the pandemic we find evidence of a major change in the selective forces acting on immunologically important SARS-CoV-2 genes (such as N and S) that likely coincided with the emergence of the 501Y lineages. In addition to involving continuing sequence diversification, we find evidence that a significant portion of the ongoing adaptive evolution of the 501Y lineages also involves further convergence between the lineages. Our findings highlight the importance of monitoring how members of these known 501Y lineages, and others still undiscovered, are convergently evolving similar strategies to ensure their persistence in the face of mounting infection and vaccine induced host immune recognition.


Sujets)
COVID-19
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.26.21250224

Résumé

New SARS-CoV-2 variants with mutations in the spike glycoprotein have arisen independently at multiple locations and may have functional significance. The combination of mutations in the 501Y.V2 variant first detected in South Africa include the N501Y, K417N, and E484K mutations in the receptor binding domain (RBD) as well as mutations in the N-terminal domain (NTD). Here we address whether the 501Y.V2 variant could escape the neutralizing antibody response elicited by natural infection with earlier variants. We were the first to outgrow two variants of 501Y.V2 from South Africa, designated 501Y.V2.HV001 and 501Y.V2.HVdF002. We examined the neutralizing effect of convalescent plasma collected from six adults hospitalized with COVID-19 using a microneutralization assay with live (authentic) virus. Whole genome sequencing of the infecting virus of the plasma donors confirmed the absence of the spike mutations which characterize 501Y.V2. We infected with 501Y.V2.HV001 and 501Y.V2.HVdF002 and compared plasma neutralization to first wave virus which contained the D614G mutation but no RBD or NTD mutations. We observed that neutralization of the 501Y.V2 variants was strongly attenuated, with IC50 6 to 200-fold higher relative to first wave virus. The degree of attenuation varied between participants and included a knockout of neutralization activity. This observation indicates that 501Y.V2 may escape the neutralizing antibody response elicited by prior natural infection. It raises a concern of potential reduced protection against re-infection and by vaccines designed to target the spike protein of earlier SARS-CoV-2 variants.


Sujets)
COVID-19
9.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248640

Résumé

Continued uncontrolled transmission of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in many parts of the world is creating the conditions for significant virus evolution. Here, we describe a new SARS-CoV-2 lineage (501Y.V2) characterised by eight lineage-defining mutations in the spike protein, including three at important residues in the receptor-binding domain (K417N, E484K and N501Y) that may have functional significance. This lineage emerged in South Africa after the first epidemic wave in a severely affected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. This lineage spread rapidly, becoming within weeks the dominant lineage in the Eastern Cape and Western Cape Provinces. Whilst the full significance of the mutations is yet to be determined, the genomic data, showing the rapid displacement of other lineages, suggest that this lineage may be associated with increased transmissibility.

10.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.06.29.20140111

Résumé

Background Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. Methods We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres; Contact Tracing (CT) in households of cases; Isolation Centres (IC), for cases not requiring hospitalisation; community health worker-led Mass Symptom Screening and diagnostic testing for symptomatic individuals (MS); and Quarantine Centres (QC), for contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (Re) of 1.5 and 1.2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER)


Sujets)
COVID-19 , Sclérose en plaques
SÉLECTION CITATIONS
Détails de la recherche